For cutting down the stress and displacement of banded wedge and synchronous V belt drive in the transmission process, promoting the transmission mechanism, and improving quality of the belt drive, the working principle of the transmission mechanism was introduced briefly. The three dimensional solid model of the transmission mechanism constituted in pro/e; the main parameters of the model were set using ANSYS Workbench. And then the serialization simulation analysis of the transmission mechanism was achieved when the tension force is located in the point of the V belt exiting meshing with the driven wheel; the cloud diagram of Von Mises stress and the maximal Von Mises stress and total deformation of the transmission mechanism were elicited. The simulation results were analyzed. The simulation results show that the maximal equivalent stress and maximal total deformation of the transmission mechanism are determined by the size of the tensioning force when the active force is small. Augmenting the active force of the transmission mechanism the maximal equivalent stress increases effectively and the maximal total deformation changes little when the active force is large. Reducing becomingly the tensioning force in ensuring natural belt drive shall reduce effectively the maximal Von Mises stress of the transmission mechanism. Adjusting opportunely the location of the tensioning force the total deformation of the transmission mechanism reduces effectively.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Simulation Research of Banded Wedge and Synchronous V Belt Drive Based on ANSYS Workbench


    Beteiligte:
    Wu, Ying (Autor:in) / Zhou, Xu (Autor:in)


    Erscheinungsdatum :

    2013


    Format / Umfang :

    6 Seiten




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Topologieoptimierung mit Ansys AIM und Ansys Workbench

    Waidmann, Axel | BASE | 2018

    Freier Zugriff

    Simulation Analysis of Plate Rubber Shock Absorber Based on ANSYS Workbench

    Zhou, Xincong / Xing, Shaopeng / Huang, Jian et al. | IEEE | 2021



    Multidisciplinary Simulation of an Exhaust Gas Component Using ANSYS Workbench

    Lepach, T. / Baumer, V. / Artner, W. | British Library Conference Proceedings | 2007