Um die Erschütterungen infolge von Schienenverkehr zu reduzieren, werden elastische Elemente in den Eisenbahnfahrweg eingebaut: elastische Zwischenlagen zwischen Schiene und Schwelle, elastische Schwellensohlen zwischen Schwelle und Schotter und Unterschottermatten unterhalb des Schotters. Das elastische Element führt zu einer ausgeprägten Eigenfrequenz des Gesamtsystems bestehend aus Fahrzeug, Fahrweg und Untergrund. Die Wirkung der elastischen Elemente beruht darauf, dass die Frequenzen oberhalb dieser Eigenfrequenz abgemindert werden. Für die Ermittlung der Wirksamkeit der Minderungsmaßnahme werden das Gleis mit elastischem Element und das Gleis ohne elastisches Element berechnet. Beide Eisenbahnfahrwege werden mit der kombinierten Finite-Element- Randelement-Methode berechnet, wobei das Gleis einschließlich des Schotters mit der Finite-Element-Methode berechnet wird, der Gleisuntergrund hingegen mit der Randelementmethode. Für die erschütterungsmindernden Gleise erweist es sich als vorteilhaft, spezielle Gleisendelemente an den Seiten des FE-Modells anzufügen. Dadurch wird zusätzlich zur Unendlichkeit des Untergrundes auch die unendliche Länge des Gleises berücksichtigt. Für die Ermittlung der Minderungswirkung werden die frequenzabhängige Nachgiebigkeit des Gleise, die Kraftübertragung des Gleises, und die Fahrzeug-Fahrweg-Wechselwirkung berechnet. Schließlich werden die Kraftminderungen verschiedener Eisenbahnfahrwege dargestellt und der Einfluss der wesentlichen Parameter untersucht.
Die Berechnung erschütterungsmindernder Eisenbahnfahrwege mit der kombinierten Finite-Element-Randelement-Methode
2012
16 Seiten, 15 Bilder, 8 Quellen
Aufsatz (Konferenz)
Deutsch
Berechnung d. Kegeldruckversuches m. einer Finite- Element- Methode.
Kraftfahrwesen | 1975
|Berechnung der Metallumformung mit der Finite-Element-Methode
Kraftfahrwesen | 1980
|Anwendung der Finite-Element-Methode zur Berechnung der Karosseriefestigkeit
Tema Archiv | 1981
|