This paper discusses the use of neural networks as a management tool for the maintenance of jointed concrete pavements. The backpropagation algorithm is applied to model the condition rating scheme adopted by Oregon State Department of Transportation. The backpropagation technique was successful in accurately capturing the nonlinear characteristics of the condition rating model. A large training set of actual pavement condition cases was used to train the network. The training was terminated when the average training error reached 0.022. A set of 6802 cases was used to test the generalization ability of the system. The trained network was able to accurately determine the correct condition ratings with the average testing error of 0.024. Finally, a statistical hypothesis test was conducted to demonstrate the system's fault-tolerance and generalization properties.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Use of neural networks for condition rating of jointed concrete pavements


    Weitere Titelangaben:

    Die Verwendung neuronaler Netze zur Bedingungsabschätzung von verbundenen Betonstraßen


    Beteiligte:
    Eldin, N.N. (Autor:in) / Senouci, A.B. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    1995


    Format / Umfang :

    9 Seiten, 5 Bilder, 5 Tabellen, 11 Quellen




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch




    Optimizing jointed concrete pavements

    British Library Online Contents | 2008


    Foundation Modeling for Jointed Concrete Pavements

    Davids, William G. | Transportation Research Record | 2000


    Nonlinear Analysis of Jointed Concrete Pavements

    Bhatti, M.Asghar | Online Contents | 1998


    Nonlinear Analysis of Jointed Concrete Pavements

    Asghar Bhatti, M. / Molinas-Vega, Idelin / Stoner, James W. | Transportation Research Record | 1998