In this paper, a real-time approach to detect the faults affecting the mean and the covariance matrix of the Kalman filter innovation sequence is presented. The ratio of two quadratic forms for which the matrices are theoretical and selected covariance matrices, as monitoring statistics, is used. The arguments of the optimal quadratic form that maximize the above statistics are determined to detect the faults in sensors rapidly. The longitudinal dynamics of an aircraft control system, as an example, is considered, and detection of the faults in pitch gyroscope affecting the mean and the covariance matrix is examined.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Sensor fault detection in flight control systems based on the Kalman filter innovation sequence


    Weitere Titelangaben:

    Sensorfehlererkennung in einem Flugregelungssystem auf der Basis der weißen Rauschsequenz eines Kalman-Filters


    Beteiligte:
    Caliskan, F. (Autor:in) / Hajiyev, C.M. (Autor:in)


    Erscheinungsdatum :

    1999


    Format / Umfang :

    6 Seiten, 4 Bilder, 13 Quellen




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch






    Sensor fault diagnosis for flight control system based on Cubature Kalman filter

    Wenkai, Fei / Jie, Xia / Guang, Ouyang et al. | IEEE | 2014


    Kalman Filter Partial Innovation Sequence Monitor

    Tanil, Cagatay | British Library Conference Proceedings | 2022