Intelligent air traffic management systems will be necessary for future ATC (Air Traffic Control), which can manage air traffic flows and flight schedules efficiently in a real-time fashion. To meet this objective, an automated decision support system is described. This system consists of several distributed decision-makers, and uses the concept learning scheme using neural networks. The system has the capability to find a suboptimal solution without interrupting the actual operations, in order to deal with various constraints. Simulation studies show that the proposed scheduling strategy works rather more efficiently than the current ATC procedures based on fixed heuristic rules.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real-time decision support for air traffic management, utilizing machine learning


    Weitere Titelangaben:

    Ein Echtzeit-Entscheidungshilfesystem mit maschinellem Lernen für die Steuerung des Luftverkehrs


    Beteiligte:
    Nogami, J. (Autor:in) / Nakasuka, S. (Autor:in) / Tanabe, T. (Autor:in)

    Erschienen in:

    Control Engineering Practice ; 4 , 8 ; 1129-1141


    Erscheinungsdatum :

    1996


    Format / Umfang :

    13 Seiten, 12 Bilder, 8 Tabellen, 18 Quellen




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch




    Real-Time Decision Support for Air Traffic Management, Utilizing Concept Learning

    Nogami, J. / Nakasuka, S. / Hori, K. et al. | British Library Conference Proceedings | 1998


    Real-time decision support for air traffic management, utilizing concept learning

    Nogami, Jun / Nakasuka, Shinichi / Hori, Koichi | AIAA | 1998


    Concept of future air traffic management and its real-time decision support utilizing concept learning

    Nogami, J. / Nakasuka, S. / Tanabe, T. et al. | British Library Conference Proceedings | 1997


    Real Time Traffic Management Using Machine Learning

    Tiwari, Jyoti / Deshmukh, Ankita / Godepure, Gayatri et al. | IEEE | 2020