To circumvent the poor prediction accuracy of traffic volume models available due to the lack of traffic data and inaccurate judgments on the traffic influence factors, in this paper we established a traffic volume prediction model using grey forecasting model GM(1,1) based on the real traffic data from the highway toll database. The GM(1,1) method has advantage of the strong adaptiveness to Complex system, thus getting a great advantage over other methods for modeling such a complex nonlinear traffic volume system with many uncertain influence factors. Simulation results show that our GM(1,1) model has mean relative prediction error of 3.9%, which accomplishes our intended prediction accuracy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Modeling Traffic Volume Based on Highway Toll Database Using GM (1,1)



    Erschienen in:

    Erscheinungsdatum :

    04.07.2011


    Format / Umfang :

    6 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    SimToll: A Highway Toll, Lane Selection, and Traffic Modeling Dataset

    Al-Mousa, Amjed / Alqudah, Rajaa / Faza, Ayman | Springer Verlag | 2023


    SimToll: A Highway Toll, Lane Selection, and Traffic Modeling Dataset

    Al-Mousa, Amjed / Alqudah, Rajaa / Faza, Ayman | Springer Verlag | 2023


    Toll bridge influence on highway traffic operation

    Campbell, M.E. | Engineering Index Backfile | 1947


    Spatiotemporal attention mechanism-based multistep traffic volume prediction model for highway toll stations

    Zijing Huang / Peiqun Lin / Xukun Lin et al. | DOAJ | 2022

    Freier Zugriff

    Highway Toll Management and Traffic Prediction Using Data Mining

    Kumar, Pruthvi / Pranathi, Kotapalli / Kamalakannan, J. | Springer Verlag | 2020