Real-time and accurate traffic flow forecasting is one of the key contents of Intelligent Transportation System. For the disadvantage of parameter selection of Support Vector Regression (SVR), an improved artificial fish swarm (IAFS) algorithm using the adaptive search mechanism was applied to optimize SVR. This method aimed at improving the prediction accuracy and extensibility of short-term traffic flow forecasting. Then a short-term traffic flow forecasting model based on IAFS-SVR was proposed. The results show that the proposed method has better prediction performance, and is suitable for short-term traffic flow forecasting.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Short-Term Traffic Flow Forecasting Based on SVR with Improved Artificial Fish Swarm Algorithm



    Erschienen in:

    Erscheinungsdatum :

    25.02.2015


    Format / Umfang :

    7 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Traffic flow forecasting method optimizing support vector regression by mixed artificial fish swarm algorithm

    YAO WEIHONG / FANG RENXIAO / ZHANG XUDONG | Europäisches Patentamt | 2015

    Freier Zugriff


    Short Term Traffic Flow Forecasting Based on Artificial Neural Network Combined Predictor

    Nie, P. / Yu, Z. / He, Z. et al. | British Library Conference Proceedings | 2007



    An Improved Artificial Fish Swarm Algorithm and Application

    Luan, Xinyuan / Jin, Biyao / Liu, Tingzhang et al. | Springer Verlag | 2014