Communication traffic is a kind of dynamic nonlinear time series affected by various factors; the traditional predication methods cant achieve higher accuracy. In order to improve the communication traffic forecasting accuracy, in this paper, analyzing Chaotic characteristics and Predictability of the Communication traffic based on the Communication traffic data of daily rush hour by collecting, and reconstructing the phase space of the communication traffic time series, proposing a method of building the predication model of the communication traffic by using Elman dynamic neural network, and using proposed model to do one-step forecasting, the experimental results show that this method improves the communication traffic forecasting accuracy. It can provide an effective way for forecasting of the communication traffic.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Researching of Chaotic Characteristics and Forecasting of Elman Network on the Communication Traffic



    Erschienen in:

    Applied Mechanics and Materials ; 347-350 ; 3565-3570


    Erscheinungsdatum :

    08.08.2013


    Format / Umfang :

    6 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    Nonlinear forecasting of Freight Volume based on Elman Network Model

    Meng Zhen / Zhou Huiyu | DOAJ | 2021

    Freier Zugriff

    Traffic Prediction of Mobile Communication Base Station Based on Elman Neural Network Model

    Li, Xiaofei / Yin, Yuelin / Wei, Jinrui | Springer Verlag | 2024


    UAV Photogrammetry and AFSA-Elman Neural Network in Slopes Displacement Monitoring and Forecasting

    Wang, Shuhong / Zhang, Zishan / Ren, Yipeng et al. | Springer Verlag | 2020