This paper based on the feature of Beijing urban rail transit sectional passenger flow, combined with Elman neural network. After carrying out modeling experiment many times, a reasonable forecast model about the prediction of urban rail transit sectional passenger flow was established. Then the Elman neural network model was used to predict the sectional passenger flow of Beijing Subway Line 1, from Xidan station to Fuxingmen Station. At last the output results was compared with that of BP neural network, the result shows that the Elman neural network is more precise and effective than the BP neural network in the prediction of urban rail transit sectional passenger flow.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Prediction of Urban Rail Transit Sectional Passenger Flow Based on Elman Neural Network



    Erschienen in:

    Applied Mechanics and Materials ; 505-506 ; 1023-1027


    Erscheinungsdatum :

    16.01.2014


    Format / Umfang :

    5 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Prediction of Urban Rail Transit Sectional Passenger Flow Based on Elman Neural Network

    Li, Q. / Qin, Y. / Wang, Z.Y. et al. | British Library Conference Proceedings | 2014



    Passenger Flow Forecast of Urban Rail Transit Based on Wavelet Neural Network

    Xiao, Qiong / Ye, Jianbin / Yu, Mingjie et al. | Springer Verlag | 2024


    Urban rail transit passenger flow prediction method under emergency

    ZHANG WENQIANG / LIU YURAN / ZHANG HANXIAO et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    OD prediction of urban rail transit passenger flow based on passenger flow trend characteristics

    Wang, Yubian / Liu, Xiang / Alexandrovich, Erofeev Alexander | SPIE | 2023