This paper simulates the traffic flow at upper stream intersection and the actual traffic flow at cross section of accident, and calculates the time for the queue to reach the upper stream intersection through Elman neural network. The result of 500 simulations shows that the probability for the time of the queue length being 140m: in [2.5min~3.5min] is 39.6% and in [3.5min~4min] is 52.0%. The total is 91.6%, which is highly precise. The prediction of queue length of post-accident traffic jam is of great importance to a quick recovery.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Traffic Jam Prediction through Elman Neural Network Based on Monte Carlo Simulation


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    09.05.2014


    Format / Umfang :

    4 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Short-term traffic flow prediction method based on GWO-Elman neural network

    LIU YUNXIANG / WANG JUN / YUAN XINXIN | Europäisches Patentamt | 2023

    Freier Zugriff

    Traffic Prediction of Mobile Communication Base Station Based on Elman Neural Network Model

    Li, Xiaofei / Yin, Yuelin / Wei, Jinrui | Springer Verlag | 2024




    Elman neural network-based temperature prediction and optimization for lithium-ion batteries

    Li, Chaoliang / Wang, Yuanlong / Chen, Xiongjie et al. | SAGE Publications | 2024