Short-term traffic flow forecasting is a core problem in Intelligent Transportation System .Considering linear and nonlinear, this paper proposes a short-term traffic flow intelligent combination approach. The weight of four forecasting model is given by the correlation coefficient and standard deviation method. The experimental results show that the new approach of real-time traffic flow prediction is higher precision than single method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An New Approach of Real-Time Traffic Flow Prediction Based on Intelligent Transportation Technology



    Erschienen in:

    Erscheinungsdatum :

    18.07.2014


    Format / Umfang :

    4 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Intelligent traffic management system based on real-time traffic flow

    WU YOULIANG | Europäisches Patentamt | 2020

    Freier Zugriff

    Traffic Flow Prediction For Intelligent Transportation System Using Machine Learning

    Manikandan B.V. / Nathan T.R. / Naresh R. et al. | DOAJ | 2023

    Freier Zugriff

    Optimal Stacked Sparse Autoencoder Based Traffic Flow Prediction in Intelligent Transportation Systems

    Neelakandan, S. / Prakash, M. / Bhargava, Sanjay et al. | Springer Verlag | 2022


    Traffic Flow Forecasting in Intelligent Transportation Systems Prediction Using Machine Learning

    Hossain, Mohammad Naveed / Ahmed, Nafim / Wazid Ullah, S. M. | IEEE | 2022