A dynamic speed-density relation is identified by using a transfer function model. The model recognizes the time-lagged response of speed to density as well as autocorrelated system noise. A framework for the adaptive calibration of dynamic speed-density relations in the context of real-time dynamic traffic assignment-simulation operation is presented. The model and the approach are evaluated on the basis of actual sensor data from the Irvine, California, network. The results indicate that use of the transfer function approach in the context of real-time simulation is preferable to the use of conventional static traffic flow models.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive Calibration of Dynamic Speed-Density Relations for Online Network Traffic Estimation and Prediction Applications


    Weitere Titelangaben:

    Transportation Research Record: Journal of the Transportation Research Board


    Beteiligte:
    Qin, Xiao (Autor:in) / Mahmassani, Hani S. (Autor:in)


    Erscheinungsdatum :

    01.01.2004




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    Online Calibration of Traffic Prediction Models

    National Research Council (U.S.) | British Library Conference Proceedings | 2005


    Online Calibration of Traffic Prediction Models

    Antoniou, Constantinos / Ben-Akiva, Moshe / Koutsopoulos, Haris | Transportation Research Record | 2005