Random parameter logit models address unobserved preference heterogeneity in discrete choice analysis. The latent class logit model assumes a discrete heterogeneity distribution, by combining a conditional logit model of economic choices with a multinomial logit (MNL) for stochastic assignment to classes. Whereas point estimation of latent class logit models is widely applied in practice, stochastic assignment of individuals to classes needs further analysis. In this paper we analyze the statistical behavior of six competing class assignment strategies, namely: maximum prior MNL probabilities, class drawn from prior MNL probabilities, maximum posterior assignment, drawn posterior assignment, conditional individual-specific estimates, and conditional individual estimates combined with the Krinsky–Robb method to account for uncertainty. Using both a Monte Carlo study and two empirical case studies, we show that assigning individuals to classes based on maximum MNL probabilities behaves better than randomly drawn classes in market share predictions. However, randomly drawn classes have higher accuracy in predicted class shares. Finally, class assignment based on individual-level conditional estimates that account for the sampling distribution of the assignment parameters shows superior behavior for a larger number of choice occasions per individual.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    On Assignment to Classes in Latent Class Logit Models


    Weitere Titelangaben:

    Transportation Research Record: Journal of the Transportation Research Board


    Beteiligte:
    Wu, Wangwei (Autor:in) / Daziano, Ricardo A. (Autor:in)


    Erscheinungsdatum :

    09.09.2022




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Contributions to Logit Assignment Model

    Leurent, Fabien M. | Online Contents | 1995



    Stochastic User-Equilibrium Formulations for Extended-Logit Assignment Models

    Prashker, J. N. / Bekhor, S. | Transportation Research Record | 1999


    Stochastic User-Equilibrium Formulations for Extended-Logit Assignment Models

    Prashker, J. N. / Bekhor, S. / Transportation Research Board | British Library Conference Proceedings | 1999


    Alternatives to Dial's logit assignment algorithm

    Bell, Michael G.H. | Online Contents | 1995