The application of supervised learning to train an intelligent vehicle with a neuro-fuzzy controller to mimic the driving behavior of a human driver is discussed. An initial fuzzy control system for vehicle driving was set up on the basis of general human driving experiences, and its control rules were modified to fit the driving behavior of an individual driver. This provides an effective mechanism to construct driving control systems with personality for automated intelligent vehicles.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Implementing Adaptive Driving Systems for Intelligent Vehicles by Using Neuro-Fuzzy Networks


    Weitere Titelangaben:

    Transportation Research Record: Journal of the Transportation Research Board


    Beteiligte:
    Lin, Y. T. (Autor:in) / Wang, F.-Y. (Autor:in) / Mirchandani, P. B. (Autor:in) / Wu, Long (Autor:in) / Wang, Z. X. (Autor:in) / Yeo, Chris (Autor:in) / Do, Michael (Autor:in)


    Erscheinungsdatum :

    01.01.2001




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Adaptive Neuro-Fuzzy Controller

    Kishan Kumar Kumbla / Jamshidi, M. / Rodrieguiz, S. | British Library Conference Proceedings | 1997


    Intelligent Adaptive Control of Robotic Systems with a New Neuro-fuzzy-fractal Approach

    Castillo, O. / Melin, P. | British Library Conference Proceedings | 2001


    Intelligent Parallel Parking Using Adaptive Neuro-Fuzzy Inference System Based on Fuzzy C-Means Clustering Algorithm

    Rezaei Nedamani, Hamidreza / Masnadi Khiabani, Parisa / Azadi, Shahram | SAE Technical Papers | 2018


    Neuro-fuzzy adaptive control and modeling a thruster of autonomous underwater vehicles

    Palis, F. / Tsepkovskiy, Y. / Filaretov, V. et al. | Tema Archiv | 2006