Outlier filtering of empirical travel time data is essential for traffic analyses. Most of the widely applied outlier filtering algorithms are parametric in nature and based on assumed data distributions. The assumption, however, might not hold under unstable traffic conditions. This paper proposes a nonparametric outlier filtering method based on a robust locally weighted regression scatterplot smoothing model. The proposed method identifies outliers based on a data point’s standard residual in the robust local regression model. This approach fits a regression surface with no constraint on parametric distributions and limited influence from outliers. The proposed outlier filtering algorithm can be applied to various data collection technologies and for real-time applications. The performance of the new outlier filtering algorithm is compared with the moving standard deviation method and other traditional filtering algorithms. The test sites include GPS data of an Interstate highway in Indiana and Bluetooth data of an urban arterial roadway in Texas. It is shown that the proposed filtering algorithm has several advantages over the traditional filtering algorithms.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Innovative Nonparametric Method for Data Outlier Filtering


    Weitere Titelangaben:

    Transportation Research Record: Journal of the Transportation Research Board


    Beteiligte:
    Wu, Zifeng (Autor:in) / Wu, Zhouxiang (Autor:in) / Rilett, Laurence R. (Autor:in)


    Erscheinungsdatum :

    09.09.2020




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Outlier Resistant Adaptive Matched Filtering

    Gerlach, K. | Online Contents | 2002




    Outlier Detection Methods on Booking Data

    Freisleben, B. / Oppitz, U. / International Federation of Operational Research Societies | British Library Conference Proceedings | 2001