A dynamic origin–destination demand estimation model for planning applications with real-time link counts from multiple days is presented. Based on an iterative bilevel estimation framework, the upper-level problem is to minimize both the deviation between estimated link flows and real-time link counts and the deviation between estimated time-dependent demand and given historical static demand. These two types of deviations are combined into a weighted objective function, where the weighting value is determined by an interactive approach to obtain the best compromise solution. The single-day formulation is further extended to use link counts from multiple days to estimate the variation in traffic demand over multiple days. A case study based on the Irvine test bed network is conducted to illustrate the methodology and estimate day-to-day demand patterns. The application illustrates considerable benefits in analyzing the demand dynamics with multiday data.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Dynamic Origin-Destination Demand Estimation with Multiday Link Traffic Counts for Planning Applications


    Weitere Titelangaben:

    Transportation Research Record: Journal of the Transportation Research Board


    Beteiligte:
    Zhou, Xuesong (Autor:in) / Qin, Xiao (Autor:in) / Mahmassani, Hani S. (Autor:in)


    Erscheinungsdatum :

    01.01.2003




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch