Pavement deterioration modeling is important in providing information with respect to the future state of the road network and in determining the needs of preventive maintenance or rehabilitation treatments. This research incorporated the spatial dependence of the road network into pavement deterioration modeling through a graph neural network (GNN). The key motivation of using a GNN for pavement performance modeling is the ability to easily and directly exploit the rich structural information in the network. This paper explored if considering the spatial structure of the road network will improve the prediction performance of the deterioration models. The data used in this research comprises a large pavement condition dataset with more than a half million observations taken from the Pavement Management Information System maintained by the Texas Department of Transportation. The promising comparison results indicate that pavement deterioration prediction models perform better when the spatial relationship is considered.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Considering the Spatial Structure of the Road Network in Pavement Deterioration Modeling


    Weitere Titelangaben:

    Transportation Research Record: Journal of the Transportation Research Board


    Beteiligte:
    Gao, Lu (Autor:in) / Yu, Ke (Autor:in) / Lu, Pan (Autor:in)


    Erscheinungsdatum :

    08.08.2023




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Low Traffic Road Pavement Deterioration in Vietnam

    Tran, Thi Kim Dang | Springer Verlag | 2021


    Pavement Deterioration Modeling in India

    Sood, V. K. / Sharma, B. M. / Kanchan, P. K. et al. | British Library Conference Proceedings | 1994


    Incorporating Unobserved Heterogeneity in Pavement Deterioration Modeling

    Hong, F. / Prozzi, J. A. / American Society of Civil Engineers | British Library Conference Proceedings | 2005