Flow prediction, a critical component of intelligent transportation systems, is essential for travel planning and traffic control. However, existing methods often struggle with inflexible sharing patterns and difficulty capturing dynamic global temporal dependencies. To address these issues, this paper proposes a traffic flow prediction model based on dynamic time-gap graph convolution (DTGCN). The DTGCN model achieves parameter sharing and cross-layer independence through independent and shared modules, enabling the utilization of distinct patterns between layers while capturing stable patterns across layers. Additionally, the paper introduces a novel method for constructing a dynamic time slot graph by viewing historical time slots as nodes, effectively modeling the ever-changing temporal interactions. Lastly, a new temporal convolution module is designed to capture flexible global temporal dependencies. Experimental results on two widely used traffic network datasets, METR-LA and PEMS-BAY, demonstrate the effectiveness of the proposed model.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Traffic Flow Prediction Based on Dynamic Time Slot Graph Convolution


    Weitere Titelangaben:

    Transportation Research Record: Journal of the Transportation Research Board


    Beteiligte:
    Chen, Hongwei (Autor:in) / Wang, Han (Autor:in) / Chen, Zexi (Autor:in)


    Erscheinungsdatum :

    01.01.2025




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Traffic prediction method based on dynamic graph convolution

    FAN JIN / WENG WENCHAO / TIAN HAO et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Dynamic graph convolution long-term traffic flow prediction method based on time perception

    ZUO KAIZHONG / LIAO TINGKANG / WANG CHEN et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Traffic flow prediction method based on dynamic sparse graph convolution GRU

    ZHANG LINLIANG / YIN JIALI / LI SHUO et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    Dynamic graph convolution traffic speed prediction method

    LIU QILIANG / YUAN HAOTAO / YANG LIU et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    Traffic Flow Prediction Based on Time-Domain Graph Convolution and GRU

    Pan, Yi / Hu, Yan / Zhao, Zhu et al. | Springer Verlag | 2025