In the context of sketch planning, a simplified network (i.e., an abstract network or subnetwork) model is expected to accurately approximate travel demand patterns and level-of-service attributes obtained from its full-network counterpart. A data prerequisite in this approximation process is the trip matrix of the simplified network. This paper discusses a maximum entropy method for the subnetwork trip matrix estimation problem, relying only on link flow rates estimated with the use of full-network traffic assignment or as observed link-level vehicle counts. A linearization algorithm of the Frank–Wolfe type is devised for problem solutions in which a column–generation approach is used iteratively to solve the linearized subproblem without path enumeration. Encouraging results from sample applications of different size and topology suggest that this method holds much promise for generating trip matrices that can be used to evaluate traffic flow patterns under various network changes.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Maximum Entropy Method for Subnetwork Origin–Destination Trip Matrix Estimation


    Weitere Titelangaben:

    Transportation Research Record: Journal of the Transportation Research Board


    Beteiligte:
    Xie, Chi (Autor:in) / Kockelman, Kara M. (Autor:in) / Waller, S. Travis (Autor:in)


    Erscheinungsdatum :

    01.01.2010




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    A maximum entropy optimization model for origin-destination trip matrix estimation with fuzzy entropic parameters

    López-Ospina, Héctor / Cortés, Cristián E. / Pérez, Juan et al. | Taylor & Francis Verlag | 2022


    The Elevator Trip Origin-Destination Matrix Estimation Problem

    Kuusinen, Juha-Matti | Online Contents | 2014


    The Elevator Trip Origin-Destination Matrix Estimation Problem

    Kuusinen, Juha-Matti / Sorsa, Janne / Siikonen, Maria-Liisa | British Library Online Contents | 2015