Pose estimation is a critical problem in autonomous vehicle navigation, especially in circumstances involving sensor failures or attacks. In this chapter, a filter‐based secure dynamic pose estimation approach is introduced such that the vehicle pose can be resilient under possible sensor attacks. Our proposed estimator coincides with the conventional Kalman filter when all sensors on autonomous vehicles are benign. If fewer than half of the measurement states consist of randomly occurring deception attacks, this chapter still gives stable estimates of the pose states: i.e. an upper bound for the estimation error covariance is guaranteed. Pose estimation results with single and multiple attacks on the testing route validate the effectiveness and robustness of the proposed approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Filter‐Based Secure Dynamic Pose Estimation


    Beteiligte:
    Liu, Xinghua (Autor:in) / Jiang, Rui (Autor:in) / Chen, Badong (Autor:in) / Sam Ge, Shuzhi (Autor:in)


    Erscheinungsdatum :

    27.09.2022


    Format / Umfang :

    21 pages




    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Secure Pose Estimation for Autonomous Vehicles under Cyber Attacks

    Liu, Qipeng / Mo, Yilin / Mo, Xiaoyu et al. | IEEE | 2019


    SECURE POSE ESTIMATION FOR AUTONOMOUS VEHICLES UNDER CYBER ATTACKS

    Liu, Qipeng / Mo, Yilin / Mo, Xiaoyu et al. | British Library Conference Proceedings | 2019


    Secure Dynamic State Estimation with a Decomposing Kalman Filter

    Liu, Xinghua / Jiang, Rui / Chen, Badong et al. | Wiley | 2022


    THE BINGHAM-GAUSS MIXTURE FILTER FOR POSE ESTIMATION

    Darling, Jacob E. / Demars, Kyle J. | British Library Conference Proceedings | 2016


    The Bingham-Gauss Mixture Filter for Pose Estimation

    Darling, Jacob / DeMars, Kyle J. | AIAA | 2016