This chapter provides the use of intelligent algorithms to determine the best position of unmanned aerial vehicles (UAVs) which can be used to enhance the capabilities of existing cellular networks. It presents an intelligent positioning algorithm based on reinforcement learning (RL) and evaluates its performance in an emergency communication network (ECN) scenario. The chapter also presents future applications of UAVs in cellular networks and the state‐of‐the‐art of positioning systems for UAVs in communication networks. It contains a brief summary of how RL works and results of simulations in an ECN scenario. It is clear from the simulations that using intelligent positioning algorithms based on RL is a viable strategy for that. However, more research is needed to design intelligent solutions which can improve multiple KPIs and generalize from past experiences at the same time.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Intelligent Positioning of UAVs for Future Cellular Networks




    Erscheinungsdatum :

    12.08.2019


    Format / Umfang :

    16 pages




    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    UAVs: The Future

    Online Contents | 2003


    Vision-based Positioning for UAVs

    Hu, Xiao | BASE | 2021

    Freier Zugriff

    GPS Relative Positioning System for UAVs

    Chen, G. / Harigae, M. / Japan Society for Aeronautical and Space Services | British Library Conference Proceedings | 2000


    INTELLIGENT AUTONOMY FOR UAVs

    Pawlowski, A. / Pridmore, L. / Franke, J. et al. | British Library Conference Proceedings | 2003