This chapter entertains the idea of deriving filtering algorithms using (deep) reinforcement learning methods. After covering the basics of reinforcement learning, it is shown that both variational inference and reinforcement learning can be viewed as instances of a generic expectation maximization problem. The equivalence between variational inference and reinforcement learning allows for developing novel filtering algorithms. The reviewed application is the battery state‐of‐charge estimation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Reinforcement Learning‐Based Filter


    Beteiligte:
    Setoodeh, Peyman (Autor:in) / Habibi, Saeid (Autor:in) / Haykin, Simon (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    12.04.2022


    Format / Umfang :

    9 pages




    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    REINFORCEMENT LEARNING BASED SATELLITE CONTROL

    DARABI AMIREBRAHIM / ZOU YU | Europäisches Patentamt | 2025

    Freier Zugriff

    Traffic light control method based on deep reinforcement learning and inverse reinforcement learning

    ZHANG YA / GU SHIYI / CHEN GUOXI | Europäisches Patentamt | 2023

    Freier Zugriff

    A State Space Filter for Reinforcement Learning in Partially Observable Markov Decision Processes

    Nagayoshi, M. / Murao, H. / Tamaki, H. | British Library Online Contents | 2009