This chapter reviews the distinguishing features of parametric and nonparametric models, presents a brief account of measure‐theoretic probability concepts, and explains the notion of exchangeability. Then, it provides guidelines for constructing nonparametric Bayesian models from parametric Bayesian equations, investigates the posterior computability, and presents the notion of algorithmic sufficiency. The reviewed applications of nonparametric Bayesian models include multiple object tracking, probabilistic optimal power flow, and single‐molecule fluorescence microscopy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Nonparametric Bayesian Models


    Beteiligte:
    Setoodeh, Peyman (Autor:in) / Habibi, Saeid (Autor:in) / Haykin, Simon (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    12.04.2022


    Format / Umfang :

    22 pages




    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Bayesian Semi-Nonparametric ARCH Models

    Koop, G. | British Library Online Contents | 1994


    Planning under Uncertainty using Bayesian Nonparametric Models

    Campbell, Trevor / Ponda, Sameera / Chowdhary, Girish et al. | AIAA | 2012


    Planning under Uncertainty using Bayesian Nonparametric Models

    Campbell, T. / Ponda, S. / Chowdhary, G. et al. | British Library Conference Proceedings | 2012


    Nonparametric Bayesian Image Segmentation

    Orbanz, P. / Buhmann, J. M. | British Library Online Contents | 2008