This chapter moves from symmetrical to asymmetrical in addressing the logit log‐linear model, which Knoke and Burke characterized as an analog of ordinary least squares (OLS) regression. It begins with a review of studies that have used logit log‐linear analysis, and it then covers the fundamental components of logit models. Many of these components resemble those in the general log‐linear model and can be interpreted in line with that technique. Notably, one of the primary differences between the logit log‐linear model and logistic regression analysis involves the treatment of continuous measures; in loglinear analyses, such measures must be treated as covariates, but logistic regression models accommodate interval‐level explanatory measures. The logit log‐linear model accommodates more than one response measure. Logit log‐linear analyses can be conducted in SPSS, which offers both general and logit programs, and an SPSS add‐on module facilitates correspondence analysis and data visualization.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Logit Log‐linear Analysis


    Beteiligte:


    Erscheinungsdatum :

    07.10.2016


    Format / Umfang :

    29 pages




    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    CHAID, LOGIT, and log-linear modeling

    Magidson, Jay / Datapro Research Corporation, Delran, NJ | TIBKAT | 1990


    Logit Regression

    Retherford, Robert D. / Choe, Minja Kim | Wiley | 1993



    Generalized logit model

    Gerken, J. | Elsevier | 1989