The study of vessel trajectories (VTs) holds significant benefits for marine route management and resource development. VT segmentation serves as a foundation for extracting vessel motion primitives and enables analysis of vessel manoeuvring habits and behavioural intentions. However, existing methods relying on predefined behaviour patterns face high labelling costs, which hinder accurate pattern recognition. This paper proposes a self‐supervised vessel trajectory segmentation method (SS‐VTS), which segments VTs based on their inherent spatio‐temporal semantics. SS‐VTS adaptively divides VTs into cells of optimal size. Then, it extracts split points on different semantic levels from the multi‐dimensional feature sequence of the VTs using self‐supervised learning. Finally, spatio‐temporal distance fusion module is performed on split points to determine change points and obtain VT segments with multiple semantics. Experiments on a real automatic identification system datasets show that SS‐VTS achieves state‐of‐the‐art segmentation results compared to seven baseline methods.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Self‐supervised vessel trajectory segmentation via learning spatio‐temporal semantics


    Beteiligte:
    Zhang, Rui (Autor:in) / Ren, Haitao (Autor:in) / Yu, Zhipei (Autor:in) / Xiao, Zhu (Autor:in) / Liu, Kezhong (Autor:in) / Jiang, Hongbo (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.11.2024


    Format / Umfang :

    13 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Self‐supervised vessel trajectory segmentation via learning spatio‐temporal semantics

    Rui Zhang / Haitao Ren / Zhipei Yu et al. | DOAJ | 2024

    Freier Zugriff

    Vessel trajectory prediction with a Gated Spatio-Temporal Graph Aggregation Network

    Zhang, Xiliang / Liu, Jin / Gong, Peizhu et al. | IEEE | 2023



    SaveDat: Spatio-Temporal Trajectory Compression by LSTM

    Horovitz, Shay / Cohen, Guy Yosef / Shmirer, Dan et al. | IEEE | 2022


    Spatio-Temporal Consistency for Semi-supervised Learning Using 3D Radar Cubes

    Lee, Wei-Yu / Dimitrievski, Martin / Jovanov, Ljubomir et al. | IEEE | 2021