Deep reinforcement learning has strong perception and decision-making capabilities that can effectively solve the problem of continuous high-dimensional state-action space and has become the mainstream method in the field of traffic light timing. However, due to model structural defects or different strategic mechanisms of models, most deep reinforcement learning models have problems such as convergence and divergence or poor exploration capabilities. Therefore, this paper proposes a multi-agent Soft Actor–Critic (SAC) for traffic light timing. Multi-agent SAC adds an entropy item to measure the randomness of the strategy in the objective function of traditional reinforcement learning and maximizes the sum of expected reward and entropy item to improve the model’s exploration ability. The system model can learn multiple optimal timing schemes, avoid repeated selection of the same optimal timing scheme and fall into a local optimum or fail to converge. Meanwhile, it abandons low reward value strategies to reduce data storage and sampling complexity, accelerate training, and improve the stability of the system. Comparative experiments show that the method based on multi-agent SAC traffic light timing can solve the existing problems of deep reinforcement learning and improve the efficiency of vehicles passing through in different traffic scenarios.

    This paper is devoted to research on the timing method of traffic lights at multiple intersections. The experimental results show that the method proposed in this paper can effectively improve the throughput of each intersection, the waiting time of vehicles, and the number of queued vehicles. In comparison with related algorithms, it is fully proven that the method proposed in this paper can effectively solve the problems pervasive in existing algorithms. In the actual application process, the traffic status information is obtained via interactions with real traffic environment, and the timing scheme of the traffic lights is dynamically adjusted according to the information, so as to achieve the effect of alleviating traffic congestion at the intersection.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multiagent Soft Actor–Critic for Traffic Light Timing


    Weitere Titelangaben:

    J. Transp. Eng., Part A: Systems


    Beteiligte:
    Wu, Lan (Autor:in) / Wu, Yuanming (Autor:in) / Qiao, Cong (Autor:in) / Tian, Yafang (Autor:in)


    Erscheinungsdatum :

    01.02.2023




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Stepwise Soft Actor–Critic for UAV Autonomous Flight Control

    Ha Jun Hwang / Jaeyeon Jang / Jongkwan Choi et al. | DOAJ | 2023

    Freier Zugriff


    Multi-agent deep reinforcement learning with actor-attention-critic for traffic light control

    Wang, Bin / He, ZhengKun / Sheng, JinFang et al. | SAGE Publications | 2024


    Traffic light signal control method based on Actor-Critic framework deep reinforcement learning algorithm

    SHEN GUOJIANG / SHEN SI / KONG XIANGJIE et al. | Europäisches Patentamt | 2021

    Freier Zugriff