Recent studies have made dozens of attempts to apply multi-agent deep reinforcement learning (MARL) for large-scale traffic signal control. However, most related studies have ignored how to master arterial traffic signal control. We cannot easily extract useful information and search solution space because the arterial traffic control problem has large state-action spaces. Here we tackle these issues by proposing a multi-agent attention-base soft actor-critic (MASAC) model to master arterial traffic control. Specifically, we implement the attention mechanism in the actor and critic network to enhance traffic information extraction ability. More importantly, we are the first to apply the soft actor-critic (SAC) algorithm to train the arterial traffic control model to search more solution spaces. Testing results indicate that the MASAC method significantly outperforms existing MARL algorithms and the multiband-based method. These findings can help researchers to design better model structures for other MARL problems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Mastering Arterial Traffic Signal Control With Multi-Agent Attention-Based Soft Actor-Critic Model


    Beteiligte:
    Mao, Feng (Autor:in) / Li, Zhiheng (Autor:in) / Lin, Yilun (Autor:in) / Li, Li (Autor:in)


    Erscheinungsdatum :

    01.03.2023


    Format / Umfang :

    4744524 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multi-agent deep reinforcement learning with actor-attention-critic for traffic light control

    Wang, Bin / He, ZhengKun / Sheng, JinFang et al. | SAGE Publications | 2024


    Multiagent Soft Actor–Critic for Traffic Light Timing

    Wu, Lan / Wu, Yuanming / Qiao, Cong et al. | ASCE | 2023


    Multi-agent Actor-Critic traffic signal cooperative control method based on centralized training and decentralized execution

    ZHANG YONGNAN / PENG SIRUI / LI YUNXUAN et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Factored Multi-Agent Soft Actor-Critic for Cooperative Multi-Target Tracking of UAV Swarms

    Longfei Yue / Rennong Yang / Jialiang Zuo et al. | DOAJ | 2023

    Freier Zugriff

    Explicit coordinated signal control using soft actor–critic for cycle length determination

    Kun Zhang / Hongfeng Xu / Baofeng Pan et al. | DOAJ | 2024

    Freier Zugriff