This paper proposes a multi-objective traffic network design problem considering vehicle gas emission under elastic demand. It aims at improving the efficiency of traffic network and reducing the traffic-related pollution through the reasonable road network planning. A multi-objective bi-level programming model is proposed to describe the traffic network design problem. The upper level attempts to minimize the total travel time, the total construction cost, and the total vehicle emission cost; the lower level is the user equilibrium assignment model under elastic demand. The non-dominated sorting genetic algorithm (NSGA-II) is utilized to compute the upper model. The lower level model is solved by double gradients projection algorithm, which applies the Monte-Carlo simulation method to realize the uncertainty of OD demand. Finally, a numerical example is used to verify the validity of the model and algorithm based on the non-symmetric Nguyen-Dupuis network.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Traffic Network Optimization Design Considering Vehicle Emission under Elastic Demand


    Beteiligte:
    Zhan, Lisha (Autor:in) / Fu, Yinping (Autor:in) / Zha, Weixiong (Autor:in)

    Kongress:

    17th COTA International Conference of Transportation Professionals ; 2017 ; Shanghai, China


    Erschienen in:

    CICTP 2017 ; 3506-3514


    Erscheinungsdatum :

    18.01.2018




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Traffic Paradox Under Different Equilibrium Conditions Considering Elastic Demand

    Qiang Tu / Lin Cheng / Dawei Li et al. | DOAJ | 2019

    Freier Zugriff



    Optimal Design for Demand Responsive Connector Service Considering Elastic Demand

    Yang, Hongtai / Zhang, Zhaolin / Fan, Wenbo et al. | IEEE | 2021


    Metamodel-Based Optimization Method for Traffic Network Signal Design under Stochastic Demand

    Wei Huang / Xuanyu Zhang / Haofan Cheng et al. | DOAJ | 2023

    Freier Zugriff