In this study, we propose an extremum-seeking control via Lie-bracket averaging approach for the approximation of optimal control problems for a class of unknown nonlinear dynamical systems. This model-free approach, combines an extremumseeking control (ESC) via Lie-bracket averaging approximation with a reinforcement learning (RL) strategy. The proposed learning approach tries to estimate the unknown value function and the corresponding optimal control policy, by using the Bellman equation and set-based least-squares estimation, which avoids the dual parameterization of the actor-critic methodology for RL. The Lie bracket approximations for ESC is used to approximate the optimal state feedback controller, which provides a model-free approach to avoid the overparameterization of the system's dynamics and the related increase in the estimation bias that happens in typical model-free actor-critic (AC) methods. The proposed approach is shown to provide reasonable approximations of optimal control problems without the need for a parameterization of the nonlinear system's dynamics. ; M.A.Sc.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Model-free Reinforcement Learning Technique for Nonlinear Systems



    Medientyp :

    Hochschulschrift


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629




    Model-free reinforcement learning

    SAXENA DHRUV MAURIA / BAE SANGJAE / NAKHAEI SARVEDANI ALIREZA et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    MODEL-FREE REINFORCEMENT LEARNING

    SAXENA DHRUV MAURIA / BAE SANGJAE / NAKHAEI SARVEDANI ALIREZA et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Driving in Dense Traffic with Model-Free Reinforcement Learning

    Saxena, Dhruv Mauria / Bae, Sangjae / Nakhaei, Alireza et al. | ArXiv | 2019

    Freier Zugriff

    Reinforcement Learning and Nonlinear Control of a X33 Vehicle Model

    Costa, Bertinho A. / Parente, Francisco L. / Lemos, Joao M. | IEEE | 2022


    Model-free Deep Reinforcement Learning for Urban Autonomous Driving

    Chen, Jianyu / Yuan, Bodi / Tomizuka, Masayoshi | IEEE | 2019