A system for generating a model-free reinforcement learning policy may include a processor, a memory, and a simulator. The simulator may be implemented via the processor and the memory. The simulator may generate a simulated traffic scenario including two or more lanes, an ego-vehicle, a dead end position, and one or more traffic participants. The dead end position may be a position by which a lane change for the ego-vehicle may be desired. The simulated traffic scenario may be associated with an occupancy map, a relative velocity map, a relative displacement map, and a relative heading map at each time step within the simulated traffic scenario. The simulator may model the ego-vehicle and one or more of the traffic participants using a kinematic bicycle model. The simulator may build a policy based on the simulated traffic scenario using an actor-critic network. The policy may be implemented on an autonomous vehicle.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Model-free reinforcement learning


    Beteiligte:

    Erscheinungsdatum :

    11.10.2022


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Klassifikation :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / B60W CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION , Gemeinsame Steuerung oder Regelung von Fahrzeug-Unteraggregaten verschiedenen Typs oder verschiedener Funktion / G05D SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES , Systeme zum Steuern oder Regeln nichtelektrischer veränderlicher Größen



    MODEL-FREE REINFORCEMENT LEARNING

    SAXENA DHRUV MAURIA / BAE SANGJAE / NAKHAEI SARVEDANI ALIREZA et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Model-free Reinforcement Learning Technique for Nonlinear Systems

    Mohamadizaniani, Maryam | BASE

    Freier Zugriff

    Driving in Dense Traffic with Model-Free Reinforcement Learning

    Saxena, Dhruv Mauria / Bae, Sangjae / Nakhaei, Alireza et al. | ArXiv | 2019

    Freier Zugriff

    Model-free Deep Reinforcement Learning for Urban Autonomous Driving

    Chen, Jianyu / Yuan, Bodi / Tomizuka, Masayoshi | IEEE | 2019