В метричних і топологічних векторних просторах поняття міри некомпактності використовується для відповідності числових значень множинам так, що компактні множини отримують нульові міри, а інші - позитивні значення, які показують, наскільки вони відрізняються від компактних. Ця концепція була ініційована Куратовський на початку 30-х років, і була визначена та розроблена багатьма різними способами. Міри некомпактності можуть дати нам достатні умови для формулювання різних теорем про нерухомі точки в метричних просторах. Інша важливе застосування цих мір полягає в характеризації операторів Фредгольма в нескінченновимірних топологічних векторних просторах. Метою даної роботи є створення відповідного критерію, який встановлює зв'язок між операторами Ліпшиця-Фредгольма в більш загальному контексті просторів Фреше і міри некомпактності Хаусдорфа. Крім того, використовуючи довільну міру некомпактності в сенсі Банаса і Гебеля, ми отримуємо теорему про нерухому точку для просторів Фреше.
Про застосування міри некомпактності в просторах Фреше
2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0