The invention provides a traffic flow and charging station load prediction method based on deep learning, and aims to improve the precision of traffic flow prediction and accurately predict the load condition of an electric vehicle charging station. The method comprises the following steps of: firstly, predicting future traffic flow and traffic speed by adopting a space-time graph convolutional network model based on an attention mechanism; and secondly, based on the probability distribution of the daily travel distance of the vehicle, calculating the charging demand of the electric vehicle by using a hybrid model and an expectation maximization algorithm, and predicting the energy consumption of the electric vehicle through a polynomial regression model. And finally, based on the driving behaviors of the electric vehicles, an electric vehicle queuing model is constructed, the model comprehensively considers the behaviors of capacity limitation, overlong waiting time, intolerant leaving and the like of the charging station, and the load prediction of the charging station is calculated through a random Markov chain analysis method. The method can effectively capture the time-space characteristics of the traffic flow and the charging demand of the electric vehicle, and improves the accuracy of load prediction of the charging station.

    本发明提供了一种基于深度学习的交通流量和充电站负荷预测方法,旨在提高交通流量预测的精度并准确预测电动汽车充电站的负荷情况。该方法包括以下步骤:首先,采用基于注意力机制的空间时间图卷积网络模型预测未来交通流量和交通速度。其次,基于车辆日行距离的概率分布,使用混合模型与期望最大化算法计算电动汽车的充电需求,并通过多项式回归模型预测电动汽车的能耗。最后,基于电动汽车的行驶行为,构建电动车排队模型,该模型综合考虑充电站容量限制、等候时间过长和不耐烦离开等行为,通过随机马尔可夫链分析方法计算充电站的负荷预测。该方法能够有效捕捉交通流量和电动车充电需求的时空特性,并提高充电站负荷预测的准确性。


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Traffic flow and charging station load prediction method based on deep learning


    Weitere Titelangaben:

    一种基于深度学习的交通流量和充电站负荷预测方法


    Beteiligte:
    CAO HUI (Autor:in) / SHI TIANZHUO (Autor:in) / ZHENG XIAODONG (Autor:in) / FANG JIAYUE (Autor:in) / XUE SHUANGSI (Autor:in) / CHEN RUILIN (Autor:in) / YAN DAPENG (Autor:in)

    Erscheinungsdatum :

    25.02.2025


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Chinesisch


    Klassifikation :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G06Q Datenverarbeitungssysteme oder -verfahren, besonders angepasst an verwaltungstechnische, geschäftliche, finanzielle oder betriebswirtschaftliche Zwecke, sowie an geschäftsbezogene Überwachungs- oder Voraussagezwecke , DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES / H02J CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER , Schaltungsanordnungen oder Systeme für die Abgabe oder Verteilung elektrischer Leistung / G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS / G06F ELECTRIC DIGITAL DATA PROCESSING , Elektrische digitale Datenverarbeitung



    Electric vehicle charging station planning method based on load and traffic flow distribution

    LIU CHAO / SUN ANLI / YU JIANBO et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    Electric vehicle charging load prediction system and method based on traffic flow

    LONG HONGYU / CHEN FANGXING / ZHOU YOU et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Traffic flow prediction method based on deep learning

    XIE GANG / WANG HAIYING / XIE RUIQI | Europäisches Patentamt | 2024

    Freier Zugriff

    Automobile charging station load intelligent prediction method and system

    ZHANG SHU / YU YUANHENG | Europäisches Patentamt | 2025

    Freier Zugriff

    Urban traffic flow prediction method based on deep learning

    WANG RONGXIU / DING YANQIU / ZHENG YAQIAN | Europäisches Patentamt | 2025

    Freier Zugriff