Environment modeling in autonomous driving is realized by two fundamental approaches, grid-based and feature-based approach. Both methods interpret the environment differently and show some situation-dependent beneficial realizations. In order to use the advantages of both methods, a combination makes sense. This work presents a fusion, which establishes an association between the representations of environment modeling and then decoupled from this performs a fusion of the information. Thus, there is no need to adapt the environment models. The developed fusion generates new hypotheses, which are closer to reality than a representation alone. This algorithm itself does not use object model assumptions, in effect this fusion can be applied to different object hypotheses. In addition, this combination allows the objects to be tracked over a longer period of time. This is evaluated with a quantitative evaluation on real sequences in real-time.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fusion of Object Tracking and Dynamic Occupancy Grid Map


    Beteiligte:
    Rexin, Nils (Autor:in) / Musch, Marcel (Autor:in) / Dietmayer, Klaus (Autor:in)


    Erscheinungsdatum :

    01.10.2019


    Format / Umfang :

    3158038 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Deep Object Tracking on Dynamic Occupancy Grid Maps Using RNNs

    Engel, Nico / Hoermann, Stefan / Henzler, Philipp et al. | IEEE | 2018


    OCCUPANCY GRID MAP-BASED EXTENDED OBJECT TRACKING

    Schutz, M. / Appenrodt, N. / Dickmann, J. et al. | British Library Conference Proceedings | 2014



    Radar-based Dynamic Occupancy Grid Mapping and Object Detection

    Diehl, Christopher / Feicho, Eduard / Schwambach, Alexander et al. | IEEE | 2020


    Offline Object Extraction from Dynamic Occupancy Grid Map Sequences

    Stumper, Daniel / Gies, Fabian / Hoermann, Stefan et al. | IEEE | 2018