A dynamic occupancy grid map (DOGMa) allows a fast, robust, and complete environment representation for automated vehicles. Dynamic objects in a DOGMa, however, are commonly represented as independent cells while modeled objects with shape and pose are favorable. The evaluation of algorithms for object extraction or the training and validation of learning algorithms rely on labeled ground truth data. Manually annotating objects in a DOGMa to obtain ground truth data is a time consuming and expensive process. Additionally the quality of labeled data depend strongly on the variation of filtered input data. The presented work introduces an automatic labeling process, where a full sequence is used to extract the best possible object pose and shape in terms of temporal consistency. A two direction temporal search is executed to trace single objects over a sequence, where the best estimate of its extent and pose is refined in every time step. Furthermore, the presented algorithm only uses statistical constraints of the cell clusters for the object extraction instead of fixed heuristic parameters. Experimental results show a well-performing automatic labeling algorithm with real sensor data even at challenging scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Offline Object Extraction from Dynamic Occupancy Grid Map Sequences


    Beteiligte:
    Stumper, Daniel (Autor:in) / Gies, Fabian (Autor:in) / Hoermann, Stefan (Autor:in) / Dietmayer, Klaus (Autor:in)


    Erscheinungsdatum :

    01.06.2018


    Format / Umfang :

    6936354 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Radar-based Dynamic Occupancy Grid Mapping and Object Detection

    Diehl, Christopher / Feicho, Eduard / Schwambach, Alexander et al. | IEEE | 2020


    Fusion of Object Tracking and Dynamic Occupancy Grid Map

    Rexin, Nils / Musch, Marcel / Dietmayer, Klaus | IEEE | 2019


    Deep Object Tracking on Dynamic Occupancy Grid Maps Using RNNs

    Engel, Nico / Hoermann, Stefan / Henzler, Philipp et al. | IEEE | 2018


    Dynamic aggregate occupancy grid generation

    STEFANATO SERGE / VASSILOVSKI DAN / PATIL SHAILESH et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    DYNAMIC AGGREGATED OCCUPANCY GRID GENERATION

    STEFANATOS STELIOS / VASSILOVSKI DAN / PATIL SHAILESH et al. | Europäisches Patentamt | 2024

    Freier Zugriff