In this article we propose a fusion model at data-level based on a linear combination of kernels. These kernels functions will be evaluated on disjoint entries, on the signature acquired from visible respective infrared spectrum. Therefore, we have to choose the proper numeric signature for the visible and for the infrared images. In order to retain just the best suited features, different feature extraction and feature selection algorithms have been investigated. In this way, important information can be achieved in a small number of coefficients, implying thus a significant reduction of the computation time. Our purpose is to develop the obstacle recognition module and to examine if a visible-infrared fusion is efficient for this task.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Kernel and Feature Selection for Visible and Infrared based Obstacle Recognition


    Beteiligte:


    Erscheinungsdatum :

    01.10.2008


    Format / Umfang :

    286105 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Obstacle Recognition Using Multiple Kernel in Visible and Infrared Images

    Apatean, A. / Rogozan, A. / Bensrhair, A. | British Library Conference Proceedings | 2009


    Obstacle recognition using multiple kernel in visible and infrared images

    Apatean, Anca / Rogozan, Alexandrina / Bensrhair, Abdelaziz | IEEE | 2009



    OBSTACLE RECOGNITION DEVICE AND OBSTACLE RECOGNITION METHOD

    IIDA KOJI | Europäisches Patentamt | 2020

    Freier Zugriff

    Obstacle recognition device and obstacle recognition method

    IIDA KOJI | Europäisches Patentamt | 2022

    Freier Zugriff