We propose a fusion model at data-level based on a linear combination of kernels for an SVM-based classification. The kernel functions are evaluated on disjoint entries, on the signature acquired from the visible and infrared spectrum. Different feature extraction and feature selection algorithms have been investigated in order to compute different feature vectors. A bi-objective optimization (using accuracy rate and classification time) is used to assure the kernel selection, the hyperparameters optimization but also the adaptation of the system to different difficult conditions using the sensor weighting coefficient. Our purpose is to develop the obstacle recognition module and to obtain a robust model for an SVM-multiple-kernel based classification.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Obstacle recognition using multiple kernel in visible and infrared images


    Beteiligte:


    Erscheinungsdatum :

    01.06.2009


    Format / Umfang :

    1263853 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Obstacle Recognition Using Multiple Kernel in Visible and Infrared Images

    Apatean, A. / Rogozan, A. / Bensrhair, A. | British Library Conference Proceedings | 2009


    Kernel and Feature Selection for Visible and Infrared based Obstacle Recognition

    Apatean, Anca / Rogozan, Alexandrina / Bensrhair, Abdelaziz | IEEE | 2008



    Evidential Combination of SVM Road Obstacle Classifiers in Visible and Far Infrared Images

    Besbes, B. / Ammar, S. / kessentini, y. et al. | British Library Conference Proceedings | 2011


    FUSION OF FAR INFRARED AND VISIBLE IMAGES IN ENHANCED OBSTACLE DETECTION IN AUTOMOTIVE APPLICATIONS

    STEIN GIDEON / SHASHUA AMNON / GDALYAHU YORAM | Europäisches Patentamt | 2016

    Freier Zugriff