Planning trajectories for automated vehicles in urban environments requires methods with high generality, long planning horizons, and fast update rates. Using a path-velocity decomposition, we contribute a novel planning framework, which generates foresighted trajectories and can handle a wide variety of state and control constraints effectively. In contrast to related work, the proposed optimal control problems are formulated over space rather than time. This spatial formulation decouples environmental constraints from the optimization variables, which allows the application of simple, yet efficient shooting methods. To this end, we present a tailored solution strategy based on ILQR, in the Augmented Lagrangian framework, to rapidly minimize the trajectory objective costs, even under infeasible initial solutions. Evaluations in simulation and on a full-sized automated vehicle in real-world urban traffic show the real-time capability and versatility of the proposed approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real-Time Spatial Trajectory Planning for Urban Environments Using Dynamic Optimization


    Beteiligte:


    Erscheinungsdatum :

    04.06.2023


    Format / Umfang :

    7772074 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Real-Time Dynamic Trajectory Optimization

    Miles, D. W. / Rock, S. M. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 1996


    Real-time dynamic trajectory optimization

    Miles, David / Rock, Stephen | AIAA | 1996


    A vision and GPS-based real-time trajectory planning for MAV in unknown urban environments

    Flores, Gerardo / Zhou, Shuting / Lozano, Rogelio et al. | IEEE | 2013


    Behavioral trajectory planning for motion planning in urban environments

    Lim, Wonteak / Lee, Seongjin / Jo, Kichun et al. | IEEE | 2017