This paper addresses the issue of real-time optimal trajectory generation of a micro Air Vehicle (MAV) in unknown urban environments. The MAV is required to navigate from an initial and outdoor position to a final position inside a building. To achieve this objective, we develop a safe path planning method using the information provided by the GPS and a consumer depth camera. With the purpose to develop a safe path planning with obstacle avoidance capabilities, a model predictive control approach is developed, which uses the environment information acquired by the navigation system.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A vision and GPS-based real-time trajectory planning for MAV in unknown urban environments


    Beteiligte:
    Flores, Gerardo (Autor:in) / Zhou, Shuting (Autor:in) / Lozano, Rogelio (Autor:in) / Castillo, Pedro (Autor:in)


    Erscheinungsdatum :

    01.05.2013


    Format / Umfang :

    1590296 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Robust and Recursively Feasible Real-Time Trajectory Planning in Unknown Environments

    Jang, Inkyu / Lee, Dongjae / Lee, Seungjae et al. | ArXiv | 2021

    Freier Zugriff

    Real-Time Spatial Trajectory Planning for Urban Environments Using Dynamic Optimization

    Ruof, Jona / Mertens, Max Bastian / Buchholz, Michael et al. | IEEE | 2023


    A system for vision-based flights in unknown urban environments

    Andert, Franz / Goormann, Lukas | Tema Archiv | 2008


    Behavioral trajectory planning for motion planning in urban environments

    Lim, Wonteak / Lee, Seongjin / Jo, Kichun et al. | IEEE | 2017


    Online State-to-State Time-Optimal Trajectory Planning for Quadrotors in Unknown Cluttered Environments

    Nguyen, Binh / Murshed, Manzur / Choudhury, Tanveer et al. | IEEE | 2024