We present an online method to estimate the number of radar emitters from sequential batches of detected pulses. To do this, we employ a recently developed Bayesian nonparametric clustering method that automatically infers the number of clusters in the data. Semiparametric change detection ensures accurate cardinality estimates in a dynamic signal environment where the number of emitters changes over time. This method improves upon the state of the art by providing better estimates of the number of clusters while processing pulses in an online fashion. We demonstrate its effectiveness on three simulated radar scenarios with increasing pulse density.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Online Estimation of Radar Emitter Cardinality via Bayesian Nonparametric Clustering


    Beteiligte:


    Erscheinungsdatum :

    01.12.2021


    Format / Umfang :

    1305027 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Cognitive chaotic UWB-MIMO radar based on nonparametric Bayesian technique

    Nijsure, Yogesh / Kaddoum, Georges / Leung, Henry | IEEE | 2015


    Nonparametric Bayesian Models

    Setoodeh, Peyman / Habibi, Saeid / Haykin, Simon | Wiley | 2022



    An Online Multisensor Data Fusion Framework for Radar Emitter Classification

    Dongqing Zhou / Xing Wang / Siyi Cheng et al. | DOAJ | 2016

    Freier Zugriff