The invasive Crown-of-Thorns starfish (COTS) poses a significant threat to coral reef ecosystems. Early detection and removal are crucial to mitigating their impact. This research proposes a YOLOv5-based object detection system to accurately identify and locate COTS in underwater images. By fine-tuning the YOLOv5 model with a dataset of COTS images, the system can effectively detect and classify COTS with high precision and recall. The output of the system includes bounding boxes and confidence scores for each detected COTS, enabling timely intervention and removal efforts. This research contributes to the conservation of coral reefs by providing a valuable tool for monitoring and controlling COTS populations. The proposed system can be integrated into underwater drones or diveroperated devices to facilitate efficient and accurate COTS detection and removal.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Detection of the Crown of Thorns starfish using YOLOv5


    Beteiligte:


    Erscheinungsdatum :

    06.11.2024


    Format / Umfang :

    842112 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Development of an Acetic Acid Injection Device for Crown-of-Thorns Starfish Controlled by a Remotely Operated Underwater Robot

    Takemura, Fumiaki / Kobashigawa, Shuta / Hirayama, Keita et al. | British Library Online Contents | 2015


    Military Aircraft Detection Using YOLOv5

    Ajay Kumar Goud, P. / Mohit Raj, G. / Rahul, K. et al. | Springer Verlag | 2023


    STD-Yolov5: a ship-type detection model based on improved Yolov5

    Ning, Yue / Zhao, Lining / Zhang, Can et al. | Taylor & Francis Verlag | 2024


    Bionic starfish robot

    LI WEI / CHEN ZHI / GU YANG et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Detection of Driver Distraction using YOLOv5 Network

    Atas, Kubilay / Vural, Revna Acar | IEEE | 2021