In this paper we describe a machine learning based framework for spacecraft swarm trajectory planning. In par-ticular, we focus on coordinating motions of multi-spacecraft in formation flying through passive relative orbit(PRO) transfers. Accounting for spacecraft dynamics while avoiding collisions between the agents makes spacecraft swarm trajectory planning difficult. Centralized approaches can be used to solve this problem, but are computationally demanding and scale poorly with the number of agents in the swarm. As a result, centralized algorithms are ill-suited for real time trajectory planning on board small spacecraft (e.g. CubeSats) comprising the swarm. In our approach a neural network is used to approximate so-lutions of a centralized method. The necessary training data is generated using a centralized convex optimization framework through which several instances of the n=10 spacecraft swarm trajectory planning problem are solved. We are interested in answering the following questions which will give insight on the potential utility of deep learning-based approaches to the multi-spacecraft motion planning problem: 1) Can neural networks produce feasible trajectories that satisfy safety constraints (e.g. collision avoidance) and low in fuel cost? 2) Can a neural net-work trained using n spacecraft data be used to solve problems for spacecraft swarms of differing size?


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Machine Learning Based Relative Orbit Transfer for Swarm Spacecraft Motion Planning


    Beteiligte:
    Sabol, Alex (Autor:in) / Yun, Kyongsik (Autor:in) / Adil, Muhammad (Autor:in) / Choi, Changrak (Autor:in) / Madani, Ramtin (Autor:in)


    Erscheinungsdatum :

    05.03.2022


    Format / Umfang :

    3756826 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Machine Learning Based Relative Orbit Transfer for Swarm Spacecraft Motion Planning

    Sabol, Alex / Yun, Kyongsik / Adil, Muhammad et al. | ArXiv | 2022

    Freier Zugriff


    Coordinated Motion Planning for On-Orbit Satellite Inspection using a Swarm of Small-Spacecraft

    Bernhard, Benjamin / Choi, Changrak / Rahmani, Amir et al. | IEEE | 2020