This paper addresses the problem of how to plan optimal motion for a swarm of on-orbit servicing (OOS) small-spacecraft remotely inspecting a non-cooperative client spacecraft in Earth orbit. With the goal being to maximize the information gathered from the coordinated inspection, we present an integrated motion planning methodology that is a) fuel-efficient to ensure extended operation time and b) computationally-tractable to make possible on-board re-planning for improved exploration. Our method is decoupled into first offline selection of optimal orbits, followed by online coordinated attitude planning. In the orbit selection stage, we numerically evaluate the upper and lower bounds of the information gain for a discretized set of passive relative orbits (PRO). The algorithm then sequentially assigns orbits to each spacecraft using greedy heuristics. For the attitude planning stage, we propose a dynamic programming (DP) based attitude planner capable of addressing vehicle and sensor constraints such as attitude control system specifications, sensor field of view, sensing duration, and sensing angle. Finally, we validate the performance of the proposed algorithms through simulation of a design reference mission involving 3U CubeSats inspecting a satellite in low Earth orbit.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Coordinated Motion Planning for On-Orbit Satellite Inspection using a Swarm of Small-Spacecraft


    Beteiligte:
    Bernhard, Benjamin (Autor:in) / Choi, Changrak (Autor:in) / Rahmani, Amir (Autor:in) / Chung, Soon-Jo (Autor:in) / Hadaegh, Fred (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.03.2020


    Format / Umfang :

    750945 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Machine Learning Based Relative Orbit Transfer for Swarm Spacecraft Motion Planning

    Sabol, Alex / Yun, Kyongsik / Adil, Muhammad et al. | IEEE | 2022


    Machine Learning Based Relative Orbit Transfer for Swarm Spacecraft Motion Planning

    Sabol, Alex / Yun, Kyongsik / Adil, Muhammad et al. | ArXiv | 2022

    Freier Zugriff

    Coordinated Orbit Transfer for Satellite Clusters

    Zhang, F. / Krishnaprasad, P. S. | British Library Conference Proceedings | 2004


    Autonomous and Distributed Motion Planning for Satellite Swarm

    Dario Izzo / Lorenzo Pettazzi | AIAA | 2007