Intelligent reflecting surface (IRS)-assisted beamspace millimeter-wave (mmWave) multiuser massive multiple input multiple output (MIMO) with interference-aware (IA) beam selection scheme is proposed in this paper. This proposed scheme is capable of intelligently reconfiguring the radio environment and utilizing the beam selection for the sake of reducing the number of required radio frequency $( R$F) chains without any noticeable performance degradation. To ensure a fair comparison, the achievable sum-rate and energy efficiency (EE) performance metrics of the proposed scheme are evaluated and compared to that of IRS-assisted fully-digital systems with zero-forcing $(Z$F) precoding and the conventional systems without the IRS technology. Simulation results demonstrate that the proposed IRS-assisted beamspace mmWave massive MIMO system with IA beam selection algorithm outperforms the conventional system without IRS. It is also shown that the performance improves when the number of reflecting elements is more than the total number of mobile users. Moreover, the proposed scheme can potentially offer higher EE than the conventional schemes. Therefore, this shows that the proposed system can be considered as an alternative solution for the future generation of wireless systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    IRS-Assisted Beamspace Millimeter-wave Massive MIMO with Interference-Aware Beam Selection


    Beteiligte:


    Erscheinungsdatum :

    01.09.2022


    Format / Umfang :

    724563 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Data-Driven Beams Selection for Beamspace Channel Estimation in Massive MIMO

    Bychkov, Roman / Osinsky, Alexander / Ivanov, Andrey et al. | IEEE | 2021


    Beamspace MIMO-NOMA for Millimeter-Wave Communications Using Lens Antenna Arrays

    Wang, Bichai / Dai, Linglong / Gao, Xiqi et al. | IEEE | 2017


    IRS-Assisted Millimeter-wave Massive MIMO with Transmit Antenna Selection for IoT Networks

    Elganimi, Taissir Y. / Rabie, Khaled M. / Nauryzbayev, Galymzhan | IEEE | 2023


    Swish-Driven GoogleNet for Intelligent Analog Beam Selection in Terahertz Beamspace MIMO

    Zarini, Hosein / Mili, Mohammad Robat / Rastiy, Mehdi et al. | IEEE | 2022


    Tiled Beamspace Processing for Scaling mmWave Massive MU-MIMO

    Han, Jiyoon / Cebeci, Canan / Tang, Wei et al. | IEEE | 2024