In this paper, we present a new beam selection approach for the beamspace channel estimation (CE) in 64 antennas Massive Multiple-Input Multiple-Output (MIMO) receiver. Usually, the beamspace CE is implemented via digital transformation of antenna signal to a priori selected sub-space of discrete Fourier transform (DFT) directed towards propagation channel taps. This results in less complexity of CE and MIMO detector units. We propose a new data-based sub-space selection method, which outperforms the DFT-based beam selection thanks to employing prior knowledge of channel tap distribution in the spatial domain. Simulation results are presented for the non-line-of-sight models of the 5G QuaDRiGa 2.0 channel.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Data-Driven Beams Selection for Beamspace Channel Estimation in Massive MIMO


    Beteiligte:
    Bychkov, Roman (Autor:in) / Osinsky, Alexander (Autor:in) / Ivanov, Andrey (Autor:in) / Yarotsky, Dmitry (Autor:in)


    Erscheinungsdatum :

    01.04.2021


    Format / Umfang :

    2511540 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    IRS-Assisted Beamspace Millimeter-wave Massive MIMO with Interference-Aware Beam Selection

    Elganimi, Taissir Y. / Elmajdub, Retaj I. / Nauryzbayev, Galymzhan et al. | IEEE | 2022


    Swish-Driven GoogleNet for Intelligent Analog Beam Selection in Terahertz Beamspace MIMO

    Zarini, Hosein / Mili, Mohammad Robat / Rastiy, Mehdi et al. | IEEE | 2022


    Tiled Beamspace Processing for Scaling mmWave Massive MU-MIMO

    Han, Jiyoon / Cebeci, Canan / Tang, Wei et al. | IEEE | 2024



    Channel Estimation for FDD Massive MIMO OFDM Systems

    Hu, Die / He, Lianghua | IEEE | 2017