The precise characterization and modeling of Cyber-Physical-Social Systems (CPSS) requires more comprehensive and accurate data, which imposes heightened demands on intelligent sensing capabilities. To address this issue, Crowdsensing Intelligence (CSI) has been proposed to collect data from CPSS by harnessing the collective intelligence of a diverse workforce. Our first and second Distributed/Decentralized Hybrid Workshop on Crowdsensing Intelligence (DHW-CSI) have focused on principles and high-level processes of organizing and operating CSI, as well as the participants, methods, and stages involved in CSI. This perspective reports the outcomes of the latest DHW-CSI, focusing on Autonomous Crowdsensing (ACS) enabled by foundation intelligence and its associated technologies such as decentralized autonomous organizations and operations, large language models, and human-oriented operating systems. Specifically, we explain what ACS is and explore its distinctive features in comparison to traditional crowdsensing. Moreover, we present the “6A-goal” of ACS and propose potential avenues for future research.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Autonomous Crowdsensing: Operating and Organizing Crowdsensing for Sensing Automation


    Beteiligte:
    Wu, Wansen (Autor:in) / Yang, Weiyi (Autor:in) / Li, Juanjuan (Autor:in) / Zhao, Yong (Autor:in) / Zhu, Zhengqiu (Autor:in) / Chen, Bin (Autor:in) / Qiu, Sihang (Autor:in) / Peng, Yong (Autor:in) / Wang, Fei-Yue (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.03.2024


    Format / Umfang :

    1164134 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Large Scale Active Vehicular Crowdsensing

    Zhu, Xiru / Samadh, Shabir Abdul / Yu, Tzu-Yang | IEEE | 2018


    Environmental Monitoring via Vehicular Crowdsensing

    Morselli, Flavio / Zabini, Flavio / Conti, Andrea | IEEE | 2018



    Sense4FL: Vehicular Crowdsensing Enhanced Federated Learning for Autonomous Driving

    Ma, Yanan / Hu, Senkang / Fang, Zhengru et al. | ArXiv | 2025

    Freier Zugriff

    Sensing Vehicle Selection Scheme Optimization in Vehicular Crowdsensing

    Yu, Haiyang / Liu, Chenyang / Yang, Yang et al. | ASCE | 2020