This paper proposes a macroscopic traffic flow model for urban traffic road network. First, dynamic digraph is used to model the urban traffic road network's topological structure. Then, traffic flow data which is based on an extended cell transmission model and the traffic shock wave theory are endowed to the dynamic digraph to construct a weighted dynamic digraph model. Finally, the modeling method is applied to a local road network to illustrate the availability of the modeling method when compared with real data.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An extended cell transmission model based on digraph for urban traffic road network


    Beteiligte:
    Han, Xingguang (Autor:in) / Chen, Yangzhou (Autor:in) / Shi, Jianjun (Autor:in) / He, Zhonghe (Autor:in)


    Erscheinungsdatum :

    01.09.2012


    Format / Umfang :

    235070 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Traffic hub node flow prediction method based on road network digraph and parallel long-short-term memory network

    YU MINGXIA / QIN ZHENG / ZHANG JIXIN | Europäisches Patentamt | 2021

    Freier Zugriff

    Cell-Link Model for state forecasting of urban road traffic network

    Liu, Siyan / Xi, Yugeng / Li, Dewei et al. | IEEE | 2014



    Research on Urban Road Network Traffic Simulation Model

    Li, Guilin / Feng, Lin / Liu, Jia | ASCE | 2014


    Digraph-based regional traffic prediction method, apparatus and device, and medium

    PENG LEI / KU YIXUAN / SHU HONGFENG et al. | Europäisches Patentamt | 2023

    Freier Zugriff