In this paper, we consider a reinforcement learning (RL) based multi-user downlink communication system. An actor-critic based deep channel prediction (CP) algorithm is proposed at the base station (BS) where the actor network directly outputs the predicted CSI without channel reciprocity. Different from the existing methods which either require the perfect channel state information (CSI), or estimate outdated CSI and set strict constraints on pilot sequences, the proposed algorithm has no such premised knowledge requirements or constraints. Deep-Q learning and policy gradient methods are adopted to update the parameters of the proposed prediction network, with the objective of maximizing the overall transmission sum rate. Numerical simulation results and the complexity analysis verify that the proposed CP algorithm could beat the existing traditional and learning based methods in terms of sum rate over different channel models and different numbers of users and antennas.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Wireless Channel Prediction for Multi-user Physical Layer with Deep Reinforcement Learning


    Beteiligte:
    Chu, Man (Autor:in) / Liu, An (Autor:in) / Jiang, Chen (Autor:in) / Lau, Vincent K. N. (Autor:in) / Yang, Tingting (Autor:in)


    Erscheinungsdatum :

    01.06.2022


    Format / Umfang :

    1104271 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Deep reinforcement learning for hybrid beamforming in multi-user millimeter wave wireless systems

    Lizarraga, Enrique M. / Maggio, Gabriel N. / Dowhuszko, Alexis A. | IEEE | 2021


    Beamforming in Multi-User MISO Cellular Networks with Deep Reinforcement Learning

    Chen, Hongchao / Zheng, Zhe / Liang, Xiaohui et al. | IEEE | 2021


    Robust UAV-Oriented Wireless Communications via Multi-Agent Deep Reinforcement Learning to Optimize User Coverage

    Mahfizur Rahman Khan / Gowtham Raj Veeraswamy Premkumar / Bryan Van Scoy | DOAJ | 2025

    Freier Zugriff

    Adjustable Multi-Objective Deep Reinforcement Learning-Based Edge User Allocation

    Kardjadja, Youcef / Ghamri-Doudane, Yacine / Ibnkahla, Mohamed | IEEE | 2024