This paper presents a novel traffic control action referring to virtual moving of the internal boundary of bi-directional highways for lane-free traffic of automated vehicles. Since capacity of lane-free traffic is roughly proportional to the road width, the total cross-road capacity may be shared flexibly (in space and time) between the two opposite directions according to the current bi-directional demand. In order to determine the control input, which is the road width or capacity sharing factor, an appropriate QP (Quadratic Programming) problem formulation employing the macroscopic CTM (Cell Transmission Model) is developed. Simulation results with and without control are analyzed and compared to demonstrate the potential of the proposed scheme in exploiting the available road infrastructure at unprecedented levels.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Optimal Control of Internal Road Boundary for Lane-free Automated Vehicle Traffic


    Beteiligte:


    Erscheinungsdatum :

    16.06.2021


    Format / Umfang :

    2684816 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Overlapping Internal Boundary Control of Lane-free Automated Vehicle Traffic-An LMI Approach *

    Malekzadeh, Milad / Yanumula, Venkata Karteek / Papamichail, Ioannis et al. | IEEE | 2023


    Modeling Vehicle Flocking in Lane-Free Automated Traffic

    Rostami-Shahrbabaki, Majid / Weikl, Simone / Niels, Tanja et al. | Transportation Research Record | 2023

    Freier Zugriff


    Macroscopic Traffic Flow Model Calibration for Lane-free Automated Vehicle Traffic

    Papamichail, Ioannis / Schoenn-Anchling, Nicolas / Malekzadeh, Milad et al. | IEEE | 2023


    Highlights of Lane-Free Automated Vehicle Traffic with Nudging

    Papageorgiou, Markos / Typaldos, Panagiotis / Theodosis, Dionysios et al. | Springer Verlag | 2024