Unmanned Aerial Vehicles (UAVs) are widely used in various applications, from inspection and surveillance to transportation and delivery. Navigating UAVs in complex 3D environments is a challenging task that requires robust and efficient decision-making algorithms. This paper presents a novel approach to UAV navigation in 3D environments using a Curriculum-based Deep Reinforcement Learning (DRL) approach. The proposed method utilizes a deep neural network to model the UAV’s decision-making process and to learn a mapping from the state space to the action space. The learning process is guided by a reinforcement signal that reflects the performance of the UAV in terms of reaching its target while avoiding obstacles and with energy efficiency. Simulation results show that the proposed method has a positive trade off when compared to the baseline algorithm. The proposed method was able to perform well in environments with a state space size of 22 millions, allowing the usage in big environments or in maps with high resolution. The results demonstrate the potential of DRL for enabling UAVs to operate effectively in complex environments.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    AV Navigation in 3D Urban Environments with Curriculum-based Deep Reinforcement Learning




    Erscheinungsdatum :

    06.06.2023


    Format / Umfang :

    1734256 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Navigation in Urban Environments amongst pedestrians using Multi-Objective Deep Reinforcement Learning

    Deshpande, Niranjan / Vaufreydaz, Dominique / Spalanzani, Anne | IEEE | 2021


    Deep Reinforcement Learning for Autonomous Drone Navigation in Cluttered Environments

    Chandrashekhar, A / Rawate, Amit / Dhanamathi, A. et al. | IEEE | 2024


    Deep Reinforcement Learning for Autonomous Drone Navigation in Cluttered Environments

    Solaimalai, Gautam / Prakash, Kode Jaya / S, Sampath Kumar et al. | IEEE | 2024



    A Deep Reinforcement Learning Framework for UAV Navigation in Indoor Environments

    Walker, Ory / Vanegas, Fernando / Gonzalez, Felipe et al. | IEEE | 2019