Urban autonomous driving in the presence of pedestrians as vulnerable road users is still a challenging and less examined research problem. This work formulates navigation in urban environments as a multi objective reinforcement learning problem. A deep learning variant of thresholded lexicographic Q-learning is presented for autonomous navigation amongst pedestrians. The multi objective DQN agent is trained on a custom urban environment developed in CARLA simulator. The proposed method is evaluated by comparing it with a single objective DQN variant on known and unknown environments. Evaluation results show that the proposed method outperforms the single objective DQN variant with respect to all aspects.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Navigation in Urban Environments amongst pedestrians using Multi-Objective Deep Reinforcement Learning


    Beteiligte:


    Erscheinungsdatum :

    19.09.2021


    Format / Umfang :

    344144 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Urban Driving with Multi-Objective Deep Reinforcement Learning

    Li, Changjian / Czarnecki, Krzysztof | ArXiv | 2018

    Freier Zugriff

    SocioSense: Robot Navigation Amongst Pedestrians with Social and Psychological Constraints

    Bera, Aniket / Randhavane, Tanmay / Prinja, Rohan et al. | ArXiv | 2017

    Freier Zugriff

    AV Navigation in 3D Urban Environments with Curriculum-based Deep Reinforcement Learning

    Braathen de Carvalho, Kevin / de Oliveira, Iure Rosa L. / Brandao, Alexandre S. | IEEE | 2023